시계열 데이터 분석에서의 어려움 현존 하는 데이터 증강 기법들은 시계열 데이터의 내제적 특성(intrinsic property)을 활용하지 못함 일반적으로 시계열 데이터는 시간 종속성(Temporal Dependency)라는 특성을 가지고 있음 이미지나 언어 데이터와 다르게 시계열 데이터는 크게 시간(time)과 빈도(Frequency) 도메인으로 나눌 수 있는데, 이러한 각각의 transformed domain에 적합한 데이터 증강이 수행되어야 하기 때문에 다른 데이터에 비해 비교적 어려움 현존하는 데이터 증강 기법들은 task에 의존적인 경향이 존재함 time Series Classification에 쓰인 증강기법이, time Seriese Anomaly Detection에는 적합하지 않을 수 있음 ..