EA: 강화학습 작업에 적용할 수 있는 생물학적 진화에서 영감을 얻은 새로운 블랙박스 알고리즘 EA 는 강화학습과 다른 관점에서 해당 문제를 해결함 강화학습 알고리즘을 설계할 떄 다뤄야 하는 많은 특성은 진화방법에서 필요없음 두가지 방법의 차이는 본질적 최적화 방법과 기본 가정에 있음 ex. EA는 블랙박스 알고리즘이므로 강화학습에서와 같이 미분 가능한 함수를 더 이상 사용 하지 않아도 돼 원하는 함수가 뭐든지 최적화 할 수 있음. 두가지 진화 알고리즘 : 1. 유전자 알고리즘 genetic algorithms 교차 crossover와 돌연변이 mutation를 이용해 부모로 부터 자손을 생성하므로 더 복잡 2. 진화 전략 evolution stategies 이전 세대의 돌연변이를 통해 만들어진 개체군에..