what is LoRA?: Low-Rank Adaptation대규모 언어모델(LLM)의 효율적인 미세 조정을 위해 개발된 기술이 방법은 사전 학습된 모델의 가중치를 동결하고, 각 층에 저랭크(rank decomposition)행렬을 삽입하여 학습 가능한 파라미터 수를 크게 줄임.이를 통해 계산 및 메모리 요구 사항을 감소시키면서도, 성능은 전체 미세 조정과 유사하게 유지할 수 있음 LoRa의 작동 원리LoRA는 특정 작업에 적응하기 위해 사전 학습된 가중치 행렬의 업데이트를 저랭크 행렬로 표현한다. 예를 들어, 트랜스포머 모델의 셀프 어텐션 모듈에서 4개의 가중치 행렬과 MLP모듈에서 2개의 가중치 행렬을 저랭크 행렬로 대체하여 학습한다.이는 전체 가중치 행렬을 업데이트하는 대신, 입력에 대해 곱해진 ..